Abstract
In future high-cadence microlensing surveys, planets can be detected through a new channel of an independent event produced by the planet itself. The two populations of planets to be detected through this channel are wide-separation planets and free-floating planets. Although they appear as similar short timescale events, the two populations of planets are widely different in nature and thus distinguishing them is important. In this paper, we investigate the lensing properties of events produced by planets with moderately wide separations from host stars. We find that the lensing behavior of these events is well described by the Chang-Refsdal lensing, and the shear caused by the primary not only produces a caustic but also makes the magnification contour elongated along the primary-planet axis. The elongated magnification contour implies that the light curves of these planetary events are generally asymmetric, and thus the asymmetry can be used to distinguish the events from those produced by free-floating planets. The asymmetry can be noticed from the overall shape of the light curve and thus can hardly be missed unlike the very short duration central perturbation caused by the caustic. In addition, the asymmetry occurs regardless of the event magnification, and thus the bound nature of the planet can be identified for majority of these events. The close approximation of the lensing light curve to that of the Chang-Refsdal lensing implies that the analysis of the light curve yields only the information about the projected separation between the host star and the planet.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have