Abstract

Based on ecological niche theory, Microcystis Aeruginosa (MA) immobilized in the complex of polyvinyl alcohol (PVA) and sodium alginate (SA) crosslinked by CaCl2, was treated as a new kind of special species, and its properties were investigated. Chlorophyll a was used to characterize the bioactivity of the immobilized MA. Results reveal that the gel beads have mechanical strength and chemical stability even under non-sterile harsh conditions, which may be attributed to the rarely seen structure (including three different layers: dense surface, tubular-shaped divergent structure and honeycomb crystal lattice layer) of the immobilized MA determined by scanning electron microscope (SEM). SEM also displays that more quantity of MA is attached to the inwall after cultivation, which demonstrates that the MA within beads maintains high bioactivity. Removal capacities on phosphorous (P) removal in wastewater in the presence and absence of the BG-11 medium were examined, and the removal ratios are 80.3% and 76.7%, respectively, which indicates that the beads without providing ample nutrients still have high capacity of P removal. In addition, control experiment, utilizing polyvinyl alcohol and sodium alginate (PVA-SA) beads without immobilized MA, demonstrates that MA within beads plays the key role in absorbing P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.