Abstract
To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5ppb, 50ppb and 10ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH4+N) removals appeared unchanged (p>0.05) with 5 and 50ppb, but decreased significantly with 10ppm (p<0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p<0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1>tetG>sul2>tetA>intI1>tetS>tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p<0.01).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have