Abstract

We have employed KrF excimer laser annealing (ELA) treatment on sol–gel derived indium–zinc oxide (IZO) precursor films to develop a method of low thermal-budget processing. As-coated IZO sol–gel film was dried at 150°C and then annealed using KrF excimer laser irradiation under ambient air. The laser irradiation energy density was adjusted to 150, 250, 350, and 450mJ/cm2 to investigate the effects of laser irradiation energy density on the microstructure, surface morphology, optical transmittance, and electrical properties of laser annealed IZO thin films. Results of GIXRD and TEM-SAED indicated that the ELA IZO thin films had an amorphous phase structure. The surface characteristics and electrical properties of laser annealed IZO thin films were significantly affected by the laser irradiation energy density. It was found that the dried IZO sol–gel films irradiated with a laser energy density of 350mJ/cm2 exhibited the flattest surface, the highest average optical transmittance in the visible region, and the best electrical properties among all ELA samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.