Abstract

About 25% of open reading frames in fully sequenced genomes are estimated to encode transmembrane proteins that represent valuable targets for drugs. However, the global analysis of membrane proteins has been proven to be problematic, e.g., because of their very amphiphilic nature. In this paper, we show that the recently published Protein Sequence Tag (PST) technology combined with an efficient sample preparation is a powerful method to perform protein analysis of highly enriched membrane fractions. The PST approach is a gel-free proteomics tool for the analysis of proteins, which relies on a "sampling" strategy by isolating N-terminal protein sequence tags from cyanogen bromide cleaved proteins. The identification of these N-terminal PST peptides is based on LC-MS/MS. The effectiveness of the technology is demonstrated for a membrane fraction, which was isolated from crude mitochondria of yeast after alkaline sodium carbonate treatment. The PST approach performed on this fraction analyzed 148 proteins, whereas 84% are identified as membrane proteins. More interestingly, among these membrane proteins 56% are predicted to be of low abundance. These encouraging results are an important step toward the development of a quantitative PST approach (qPST) for the differential display of membrane protein analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call