Abstract

Initial processing of Athabasca oil sands obtained from the water-based extraction process yields stable water-in-bitumen emulsions. When the bitumen is diluted with naphtha to reduce its viscosity and density, partial separation can be obtained with a suitable demulsifier. However, a “rag layer” forms between the clean oil and free water layers. The partially oil-wet kaolinite in clay solids can retard water-in-oil emulsion coalescence, entrap oil drops, and form aggregates, which results in a rag layer in the middle of the sample. Once formed, this rag layer prevents further coalescence and water separation. We show here that wettability of kaolinite can be characterized via ζ potential measurement and modeling. A simplified Gouy−Stern−Grahame model and an oxide site binding model can be used to correlate the ζ potential of kaolinite in brine with different additives. Sodium silicate has the greatest effect per unit addition on changing the ζ potential of kaolinite and can be used to change the wettability of clay solids. The separation of water in diluted bitumen emulsion can be enhanced by changing the wettability of clay solids using silicate and pH control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.