Abstract

The kinetic mechanism for the amino acid activation reaction of Staphylococcus aureus isoleucyl-tRNA synthetase (IleRS; E) has been determined from stopped-flow measurements of the tryptophan fluorescence associated with the formation of the enzyme-bound aminoacyl adenylate (E.Ile-AMP; Scheme 1). Isoleucine (Ile) binds to the E.ATP complex (K4 = 1.7 +/- 0.9 microM) approximately 35-fold more tightly than to E (K1 = 50-100 microM), primarily due to a reduction in the Ile dissociation rate constant (k-1 approximately 100-150 s-1, cf. k-4 = 3 +/- 1.5 s-1). Similarly, ATP binds more tightly to E.Ile (K3 = approximately 70 microM) than to E (K2 = approximately 2.5 mM). The formation of the E.isoleucyl adenylate intermediate, E.Ile-AMP, resulted in a further increase in fluorescence allowing the catalytic step to be monitored (k+5 = approximately 60 s-1) and the reverse rate constant (k-5 = approximately 150-200 s-1) to be determined from pyrophosphorolysis of a pre-formed E.Ile-AMP complex (K6 = approximately 0.25 mM). Scheme 1 was able to globally predict all of the observed transient kinetic and steady-state PPi/ATP exchange properties of IleRS by simulation. A modification of Scheme 1 could also provide an adequate description of the kinetics of tRNA aminoacylation (kcat,tr = approximately 0.35 s-1) thus providing a framework for understanding the kinetic mechanism of aminoacylation in the presence of tRNA and of inhibitor binding to IleRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.