Abstract
The iron(III) complexes [Fe(H2O)n(OH)m]3-m (n + m = 5, 6, m ≤ 3) and corresponding proton transfer reactions are studied with total energy calculations, the nudged elastic band (NEB) method, and molecular dynamics (MD) simulations using abinitio and a modification of reactive force field potentials, the ReaxFF-AQ potentials, based on the implementation according to Böhm et al. [J. Phys. Chem. C 120, 10849-10856 (2016)]. Applying abinitio potentials, the energies for the reactions [Fe(H2O)n(OH)m]3-m + H2O → [Fe(H2O)n-1(OH)m+1]2-m + H3O+ in a gaseous environment are in good agreement with comparable theoretical results. In an aqueous (aq) or alkaline environment, with the aid of NEB computations, respective minimum energy paths with energy barriers of up to 14.6 kcal/mol and a collective transfer of protons are modeled. Within MD simulations at room temperature, a permanent transfer of protons around the iron(III) ion is observed. The information gained concerning the geometrical and energetic properties of water and the [Fe(H2O)n(OH)m]3-m complexes from the abinitio computations has been used as reference data to optimize parameters for the O-H-Fe interaction within the ReaxFF-AQ approach. For the optimized ReaxFF-AQ parameter set, the statistical properties of the basic water model, such as the radial distribution functions and the proton hopping functions, are evaluated. For the [Fe(H2O)n(OH)m]3-m complexes, it was found that while geometrical and energetic properties are in good agreement with the abinitio data for gaseous environment, the statistical properties as obtained from the MD simulations are only partly in accordance with the abinitio results for the iron(III) complexes in aqueous or alkaline environments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have