Abstract

We have investigated the relationship between improved electrical properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) and electronic state densities at the Al2O3/AlGaN interface evaluated from the same structures as the MOS-HEMTs. To evaluate Al2O3/AlGaN interface state densities of the MOS-HEMTs, two types of capacitance-voltage (C-V) measurement techniques were employed: the photo-assisted C-V measurement for the near-midgap states and the frequency dependent C-V characteristics for the states near the conduction-band edge. To reduce the interface states, an N2O-radical treatment was applied to the AlGaN surface just prior to the deposition of the Al2O3 insulator. As compared to the sample without the treatment, the N2O-radical treated Al2O3/AlGaN/GaN structure showed smaller frequency dispersion of the C-V curves in the positive gate bias range. The state densities at the Al2O3/AlGaN interface were estimated to be 1 × 1012 cm−2 eV−1 or less around the midgap and 8 × 1012 cm−2 eV−1 near the conduction-band edge. In addition, we observed higher maximum drain current at the positive gate bias and suppressed threshold voltage instability under the negative gate bias stress even at 150 °C. Results presented in this paper indicated that the N2O-radical treatment is effective both in reducing the interface states and improving the electrical properties of the Al2O3/AlGaN/GaN MOS-HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.