Abstract

We study and demonstrate the dc performance of two InP/InGaAs double-heterojunction bipolar transistor (DHBTs) with the undoped tunnelling barrier and composite collector structures. Due to the mass filtering effect for holes, a thin InP tunnelling barrier can be used to replace the wide-gap emitter. By varying the thickness of the barrier, distinct collector current ideality factors can be obtained which reveal different injection mechanisms at the emitter. The 4000 Å InP collectors with InP/InGaAs abrupt junctions and InP/InGaAsP/InGaAs step-graded junctions achieve high breakdown voltages of 9.2 and 14.6 V, respectively. Furthermore, the abrupt junction and δ-doping structure eliminate carrier blocking across the base-collector heterojunction more effectively than the step-graded junction. We find that the reduction of the multiplication avalanche of the step-graded junction DHBT leads to the severe self-heating effect. For the abrupt junction DHBT, the dc current gain is almost independent of the perimeter-to-area ratio of the emitter due to the low surface recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.