Abstract

Samples taken from laboratory-produced 3rd generation advanced high-strength steels, solidified at a low cooling rate, have been investigated to study the characteristics of non-metallic inclusions. Two steels, containing 2 and 5 pct Mn content, were produced for this purpose. A higher number of total inclusions were observed in 5 pct Mn steel. The four main types of inclusions observed were Al2O3, AlN, MnS, and AlSiMn-oxide. These classes were divided into subclasses according to variations in their chemistry. The major subclasses of AlN inclusions are either plate-like or regular in shape and have different size distributions. Thermodynamic calculations suggest that plate-like AlN inclusions are formed at the initial stage of solidification, while faceted/regular-shaped inclusions are precipitated toward the end of solidification. Moreover, it was found that the size of nitride inclusions is related to their N content. This phenomenon is discussed from the viewpoint of nucleation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call