Abstract

ObjectiveThe study aimed to investigate gyrA and gyrB mutations in Mycobacterium tuberculosis (MTB) clinical strains from 93 patients with pulmonary tuberculosis in Hubei Province, China, and analyze the association between mutation patterns of the genes and ofloxacin resistance level. ResultsAmong 93 MTB clinical isolates, 61 were ofloxacin-resistant by the proportion method, and 32 were ofloxacin-susceptible MDR-TB. No mutation in the gyrB gene was found in any MTB strains. In the 61 ofloxacin-resistant isolates, 54 mutations were observed in the gyrA gene. Only one mutation in the gyrA gene was found in ofloxacinsusceptible MDR-TB isolates. In this study, the mutation patterns of gyrA involved seven patterns of single codon mutation (A90V, S91P, S91T, D94N, D94Y, D94G or D94A) and two patterns of double codons mutation (S91P & D94H, S91P & D94A). The ofloxacin minimal inhibitory concentrations (MICs) of three patterns of single codon mutations in the gyrA gene (codons 94, 90 and 91) showed a statistically significant difference (p<0.0001). ConclusionsThe gyrA mutations at codons 90, 91 and 94 constitute the primary mechanism of fluoroquinolone resistance in MTB, and mutations at codon 91 in the gyrA gene may be associated with low-level resistance to ofloxacin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.