Abstract

Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ammonia (NH3) emitted during the composting of livestock and poultry waste are important gaseous atmospheric pollutants. However, most previous studies on compost-related anthropogenic emissions of these gases were based on small reactor composting. Our understanding of their in situ emissions during industrial composting remains extremely limited. In order to explore the influence of gas produced by industrial composting on regional environment, we monitored CO2, CH4, N2O and NH3 emissions during industrial composting for 19 days and characterized the isotopic composition of emitted NH3. On average, the emission rates of CO2, CH4, N2O, and NH3 during the composting cycle were 86.8 g CO2-C·d-1·m-2, 9.8 g CH4-C·d-1·m-2, 3.7 mg N2O-N·d-1·m-2 and 736.6 mg NH3-N·d-1·m-2, respectively. The contribution of CH4 to daily global warming potential (GWP) was the highest (65%), followed by CO2, NH3(indirect), and N2O. Moreover, ammonia emitted from industrial compost had a mean δ15N value of -11.6‰±1.2‰ (range: -21.8‰--7.2‰). Overall, this study provided useful information for understanding greenhouse gas emission dynamics and characterizing atmospheric NH3 sources during composting process in livestock and poultry breeding areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call