Abstract

The usefulness of silicon nitride as a high temperature ceramic can be limited by the presence of amorphous phases at the grain boundaries. Dense silicon nitride ceramics are produced using pressureless sintering of Si3N4 with Y-Si-Al-O-N additives. When these additives are left as a glassy phase at the grain boundaries and triple grain junctions, the mechanical properties at elevated temperatures are weakened due to these low viscous glasses. Post-sintering heat treatments and close compositional control can be effective in transforming the glass into crystalline phases at the grain boundaries thereby increasing the refractoriness.To optimize high temperature mechanical properties, processing must be controlled not only to fully crystallize the grain boundaries but also to avoid certain unstable secondary phases whose oxidation leads to large molar volume changes which causes possible cracking. Transmisssion electron microscopy and x-ray microanalysis (EDS) are significant methods to characterize the amorphous grain boundary pockets and to identify the crystalline grain boundary phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call