Abstract

The high performance of hydrogen fuel cells requires an efficient transport of product/reactants in the porous electrodes. An important role in the transport processes plays a gas diffusion layer (GDL) – a key part of the fuel cell electrode. In this work, we studied gas transport properties of commercially available GDLs using a limiting current technique. Average relative diffusivities of oxygen and hydrogen for different commercially available GDLs were measured in operating fuel cell. An elaborate analysis of oxygen and hydrogen transport provided important insights into gas diffusion performance and water saturation of GDL at different current densities. Water transport was found to be governed by the GDL thickness. Structural study of GDL by scanning electron microscopy and mercury intrusion porosimetry techniques was performed. Fuel cell performance of GDLs at different relative humidities was studied and analyzed in the framework of transport and structural properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.