Abstract
The present work was conducted to investigate the immobilization of lipase from Penicillium sp. onto three modified bentonites by simple adsorption and crosslinking methods. The composites were characterized by FTIR, SEM and BET. The free and bentonite-supported lipase was evaluated in terms of operational and storage stability and pH and thermal activity and stability. The kinetic parameters were also evaluated. The results show that all immobilized enzymes had better thermal and pH stability compared to free enzymes. Among the immobilized enzymes, GDU-bent-lipase had more efficient performance in thermal (38% of its initial activity within 24 h at 65 °C), operational (70% residual activity after 9 cycles), storage stability (70.14% of its initial activities at 4 °C for 21 days), and kinetic properties (effectiveness factor 0.79 relative to free enzyme) than free and other immobilized enzymes. The adsorption isotherm was modeled by Langmuir, Freundlich and Temkin isotherms which Langmuir isotherm indicated a better fit of the experimental adsorption data. To the best of our knowledge, this is the first comparative report about the immobilization of lipase Produced by Penicillium sp., isolated from olive mill wastewater, and the most comprehensive study about the immobilization of lipase onto several supports.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have