Abstract

Wet-process phosphoric acid is one product of the reaction between phosphate rock and sulfuric acid. The limiting step in this process occurs when the acid is filtered from the reaction slurry, which also contains calcium sulfate (gypsum). The acid-soluble impurities present in the phosphate rock (e.g., fluorine, silicon, and aluminum) form complexes in wet-process acid which can alter the optimum size and habit of gypsum crystals, thereby reducing the filtration rates. Fluorine-containing complexes are strongly suspected of being potent modifiers of the crystal habit of gypsum. However, the identities of the complexes responsible for the habit modification have not been established. The identities of the complexes formed in phosphoric acid (28% P2O5) containing additions of fluorine (HF and H2SiF6) and aluminum [Al(NO3)3 · 9H2O or AlF3 · 9H2O] were established in this study by using fluorine-19 (19F) and phosphorus-31 (31P) nuclear magnetic resonance (NMR) spectroscopies. Peaks due to aluminum fluoride, fluorosilicate, and fluoroaluminum phosphate complexes were observed in the NMR spectra recorded from these solutions. In addition, the19F and31P NMR spectra of wet-process acids were recorded. These spectra contained peaks assigned to the hexafluorosilicate ion (major species), along with aluminum fluoride and fluoroaluminum phosphate complexes (minor species).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call