Abstract

The mechanism of G protein-mediated inhibition of an inwardly rectifying K+ current (IIR) in adrenal chromaffin cells was investigated using the whole-cell version of the patch clamp technique. In case of recording with use of ATP-containing patch solution, the IIR was well maintained; otherwise, it ran down within 15 min. This run down was not prevented by replacement with adenylyl-imidodiphosphate, a nonhydrolysable analogue of ATP, but was markedly reduced by the addition to the ATP-free solution of 1 microM calyculin A, a specific inhibitor of serine/threonine phosphatase 1 (PP1) and 2A (PP2A). The addition of alkaline phosphatase to the ATP-containing solution facilitated run down of the current, and application of 100 microM H-7, a general kinase inhibitor, reversibly suppressed IIR. These results taken together suggest that inwardly rectifying K+ channels are under the influence of kinase and phosphatase without external signals. Infusion of nonhydrolysable analogues of GTP, guanosine-5'-O-(3-thiophosphate) (GTP gamma S) or guanylyl-imidodiphosphate, through the pipette produced little inward current at -55 mV, but completely inhibited IIR within approximately 5 or 6 min in all cells tested in the presence of 12 microM Mg2+ inside the cell. In contrast, infusion of aluminum fluoride (AlF) complex, another GTP binding (G) protein activator, consistently produced large inward currents, but did not alter IIR noticeably for 15 min in 17% of the cells tested. In the other cells, the inhibition of IIR developed slowly after long latent periods. This inhibitory potency of AlF was not enhanced by an increase in Mg2+ concentrations. Subtraction of the current-voltage relationship before from that noted during the generation of inward current by AlF complex revealed that the inward current diminished progressively with hyperpolarizations, as is the case with a nonselective cation current (INS) induced by a muscarinic agonist. Thus, AlF complex seems to be potent with the generation of INS, but not with IIR inhibition. The addition of 3 microM calyculin A significantly retarded the IIR inhibition by GTP gamma S, whereas that of 1 microM okadaic acid, another inhibitor of PPI and PP2A, markedly prevented the decline of IIR by AIF complex. Our observations suggest that the low potency of AlF complex in inhibiting IIR may be due to interference with phosphatase activity and that the activation of G protein suppresses IIR, probably by enhancing the apparent activity of phosphatase, which may explain run down of the current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.