Abstract

Understanding the flow behavior of semi-solid slurries containing low solid fractions is key to the success in applying this process in the die casting industry. With these low initial solid fractions, the flow behavior of semi-solid slurries is quite complicated, making it difficult to model accurately. This present work developed and studied characterization methods for the flow behavior of semi-solid slurries at low solid fractions in high-pressure die casting. A new parameter, the ratio of gate speed to initial solid fraction (Vg/fs), was proposed to be correlated to the normalized flow interface length, blister area and tensile properties. Results from the flow pattern analysis suggest that the flow behavior can be controlled to achieve laminar flow by varying the initial solid fraction. Blister test results show the trend that slurry die casting conditions with high Vg/fs values exhibit high blister areas. Die casting conditions with excessively high gate speeds and insufficient solid fractions result in turbulent flow patterns and high levels of blister defect. The results of tensile test and fracture surface analysis are consistent with other analysis results. The samples formed by liquid die casting and slurry die casting with high Vg/fs values have gas porosity due to turbulent flow pattern during die filling. On the other hand, the samples formed by slurry die casting with too low Vg/fs values contain shrinkage porosity. This is because of insufficient time for shrinkage feeding due to a combination of a high solid fraction and a low gate speed. This study has demonstrated that die casting with slurries containing low initial solid fractions gives die casters another process parameter to adjust, which can help reduce and control the gas and shrinkage porosities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.