Abstract
Biological evaluation of ([(125)I]4), a new single-photon emission computed tomography (SPECT) radioligand for imaging the serotonin transporter (SERT) which displayed improved in vivo kinetics for mapping SERT binding sites in the brain. In vitro binding studies of [(125)I]4 were performed with membrane homogenates of LLC-PK1 cells stably transfected and overexpressing one of the monoamine transporter (SERT, DAT or NET) and rat cortical homogenates. Biodistribution and ex vivo autoradiography studies were carried out in rats. In vivo competition experiments were evaluated to determine the SERT selectivity of [(125)I]4 vs. ([(125)I]1). In vitro binding studies of 4 showed excellent binding affinity (Ki,SERT=0.90 ± 0.05 nM) and excellent selectivity over the other monoamine transporters (100 fold and >4000 fold for NET and DAT respectively). Scatchard analysis of saturation binding of [(125)I]4 to rat cortical homogenates gave a Kd value of 0.5 ± 0.09 nM and a Bmax value of 801.4 ± 58.08 fmol/mg protein. The biodistribution study showed rapid high brain uptake (3.09 ± 0.11% dose/organ at 2 min) and a good target to non-target ratio (hypothalamus to cerebellum) at 30 min (2.62) compared to [(125)I]1 (2.19). Ex vivo autoradiography showed that FlipIDAM localizes in accordance with SERT distribution patterns in the brain. In vivo and ex vivo competition experiments with specific and non-specific SERT compounds also showed that [(125)I]4 binds specifically to SERT rich regions. The biological evaluation of [(125)I]4 demonstrates that [(123)I]4 would be a good candidate for SPECT imaging of SERT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have