Abstract

Pyrolysis transforms bulky and heterogeneous lignocellulosic biomass into more easily-handled oils that can be upgraded into bio-based transportation fuels. Existing systems for monitoring pyrolysis processes and characterizing their products rely on slow and time-consuming wet chemical analyses. On-line near-infrared (NIR) spectroscopy could potentially replace such analyses, providing real-time data and reducing costs. To test the usefulness of NIR methods in characterizing pyrolysis oils and processes, biomass from conifers, Salix, and reed canary grass was milled and pyrolyzed at 675, 750, and 775 °C. Two separate pyrolytic fractions (aerosol and condensed) were produced in each experiment, and NIR spectra were collected for each fraction. Multivariate modelling of the resulting data clearly showed that the samples’ NIR spectra could be used to accurately predict important properties of the pyrolysis oils such as their energy values, main organic element (C, H and O) contents, and water content. The spectra also contained predictive information on the samples’ origins, fraction, and temperature treatment, demonstrating the potential of on-line NIR techniques for monitoring pyrolytic production processes and characterizing important properties of pyrolytic oils from lignocellulosic biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.