Abstract

Thermoplastic carbon electrodes (TPEs) are an alternative form of carbon composite electrodes that have shown excellent electrochemical performance with applications in biological sensing. However, little has been done to apply TPEs to environmental sensing, specifically heavy metal analysis. The work here focuses on lead analysis and based on their electrochemical properties, TPEs are expected to outperform other carbon composite materials; however, despite testing multiple formulations, TPEs showed inferior performance. Detailed electrode characterization was conducted to examine the cause for poor lead sensing behavior. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface functional groups, indicating that acidic and alkaline functional groups impact lead electrodeposition. Further, scanning electron microscopy (SEM) and electrochemical characterization demonstrated that both the binder and graphite can influence the surface morphology, electroactive area, and electron kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call