Abstract

The aggregation of casein micelles in undiluted skim milk after the addition of chymosin was studied by static light scattering and ultra low shear viscometry. The static light scattering measurements were made with two different sample thicknesses, 72 and 16 μm. The scattering data were analyzed by indirect Fourier transformation and by the polydispersity inversion technique which led to pair distance distribution functions and size distribution function, respectively. The minimum scattering angle was 1°, which allows for the determination of particle sizes up to a maximum diameter of 12 μm. The fractal dimension determined from double logarithmic plots of intensity versus scattering vector resulted in values between 1.9 and 2.0. The influence of multiple scattering was determined by comparison of the measurements with the different sample thicknesses. The measurements show no significant influence of multiple scattering when the transmission is above 0.85. Due to the very complex and porous structure of the casein aggregates the Rayleigh–Debye–Gans scattering theory has been used in the data analysis. Measurements with a new instrument using ultra low shear showed good agreement with theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call