Abstract

Historically, the emission of particles from clinker kiln stacks has been one of the main environmental concerns in cement manufacturing processes. Up to now, environmental regulations have only focused on determining and controlling filterable particulate matter (FPM) in industrial emission sources. However, in recent years a growing interest in determining and analysing condensable particulate matter (CPM) has been evidenced due to the significant and established contribution of CPM to total emissions of particulate matter (PM).In this work, total PM (FPM + CPM) emissions from a clinker kiln in a cement manufacturing process have been characterized. A series of tests were performed to simultaneously collect FPM and CPM using a sampling train patented by University of Seville. The results showed very low level of emissions compared to regulatory limits. The average FPM and CPM concentrations obtained in the kiln were in the same order of magnitude, at 3.4 mg/Nm3 and 2.8 mg/Nm3, respectively. The CPM analysed was predominantly inorganic and represented 46% of total PM emissions.In addition, a microscopic morphological analysis was carried out on the samples and confirmed the presence of CPM with a size of less than 2 μm, as well as establishing the principal constituent elements of the same. The main element components were Al, Ca, Fe, Si, C and O. Compounds such as CaCO3, alite, ferrite and dolomite were detected with analytical characterization techniques, such as infrared spectroscopy (FTIR) analysis and X-ray diffraction (XRD), providing a better understanding of the sources of contamination within CPM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call