Abstract

Colloidal semiconductor quantum dot (QD) nanocrystals can be deposited in the form of inorganic thin films using the ion beam direct deposition method. To simultaneously preserve the nanocrystal configuration and remove the organics derived from the ligand and solvent, the authors used an electrospray technique and an ion beam technique. These techniques provided a soft-ionization process to obtain nanocrystalline ions and a collision process to attain a nonequilibrium state of the deposits, respectively. Because of the nature of the soft-ionization process, the electrospray phenomenon resulted in various forms of QD ions that depended on the preparation of the colloidal solution source and spraying conditions. The authors concentrated on finding operational conditions of the system that deposited thin films with reduced organics concentrations by examining the correlation between fast Fourier transform infrared absorption spectroscopy and photoluminescence intensity. The morphology of the deposited films was observed using an atomic force microscope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call