Abstract

Deformations in normal strength concrete (NSC) and high performance concrete (HPC) were examined using image analysis to better understand the distribution of strain in these materials as related to their composition and microstructure. Elastic strain, creep and shrinkage were shown to occur non-uniformly throughout the NSC and HPC microstructure and creep and shrinkage strain both increased with time, as expected. The non-uniformity in the strain measurements also increased with time, as a consequence of dissimilarities in time-dependent behavior of the paste and the aggregate. However, compared with NSC, the time-dependent strains in the HPC were lower and showed less variation, suggesting a more uniform microstructure. In both NSC and HPC, high-strain sub-regions were evident in the vicinity of the interfacial transition zone (ITZ), likely as a consequence of the strain mismatch between aggregate and paste. The thickness of the high strain sub-regions along the ITZ in HPC were approximately one half of those in NSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call