Abstract
Dural afferent neurons are implicated in primary headaches including migraine. Although a significant portion of primary afferent neurons innervating the dura are myelinated A-type neurons, previous electrophysiological studies have primarily characterized the functional properties of small-sized C-type sensory neurons. Here we show the functional characterization of dural afferent neurons identified with the fluorescent dye DiI. DiI-positive neurons were divided into three types: small-, medium-, and large-sized neurons, based on their diameter, area, and membrane capacitance. The immunoreactivity of NF200, a marker of A-type myelinated neurons, was detected in most large-sized, but it was also present in a limited number of small- and medium-sized DiI-positive neurons. Capsaicin, a transient receptor potential vanilloid 1 agonist, induced the membrane currents in most small- and medium-sized neurons, but not in large-sized DiI-positive neurons. Tetrodotoxin-resistant Na+ channels were expressed in almost all types of DiI-positive neurons. Mechanosensitive currents were detected from a majority of large-sized, and to a lesser extent, small- and medium-sized DiI-positive neurons. The results suggest that most dural afferent neurons are nociceptive, e.g., polymodal C-type for small- and medium-sized neurons, and high-threshold nociceptive A-type mechanoreceptors for large-sized neurons. We also found that DiI-positive neurons differed with respect to passive and active membrane properties, and that sumatriptan, a representative drug used for the acute treatment of migraine attack, inhibited voltage-gated Ca2+ currents in all types of DiI-positive neurons. The present results showing the nociceptive properties of dural afferent neurons would contribute to understand the pathophysiology of primary headaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have