Abstract
Candida albicans is an opportunistic pathogen responsible for life-threatening infections in persons with impaired immune systems. Topoisomerase I is a potential target for novel antifungal agents; however, in order for this enzyme to be a therapeutically useful target, it needs to be demonstrated that the fungal and human topoisomerases differ sufficiently as to allow the fungal topoisomerase to be selectively targeted. To address this question, we isolated the topoisomerase I from C. albicans and compared its biochemical properties with those of the mammalian enzyme. Similar to other eukaryotic type I topoisomerases, the C. albicans type I topoisomerase has an apparent molecular mass of 102 kDa and covalently links to the 3' end of DNA, as shown after the reaction is interrupted by sodium dodecyl sulfate. Topoisomerase poisons such as camptothecin act by stabilizing the cleavage complex formed by the topoisomerase I and DNA. We observed that the C. albicans and mammalian type I topoisomerases differ in that the C. albicans cleavage complex is approximately 10-fold less sensitive to camptothecin than the mammalian cleavage complex is. In addition, we found that the antifungal agent eupolauridine can stabilize the cleavage complex formed by both the C. albicans and human topoisomerases and that the response of the C. albicans topoisomerase I to this drug is greater than that of the human enzyme. Thus, the topoisomerase I from C. albicans is sufficiently distinct from the human enzyme as to allow differential chemical targeting and will therefore make a good target for antifungal drug discovery.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have