Abstract
Microwave Kinetic Inductance Detectors (MKIDs), just like a planar resonance cavity resonating at a microwave frequency, are emerging as a kind of high-sensitivity detector suitable for large format arrays at terahertz (THz) wavelengths. There are two types of MKIDs, namely distributed (or antenna-coupled) MKIDs and lumped-element MKIDs (aka LeKIDs). Various superconducting thin films (such as Al, TiN, NbTiN, NbN, and Nb) have been investigated for MKIDs. They do work so long as the detected photon energy exceeds their energy gap, but their response and noise behaviors are yet to be fully understood. Here we report on the design, fabrication, and characterization of distributed and lumped-element MKIDs made of NbTiN superconducting film. Detailed simulation and measurement results will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.