Abstract
Pathological tissue on the surface of the retina that can be of different etiology and pathogenesis can cause changes in the retina that have a direct consequence on vision. Tissues of different etiology and pathogenesis have different morphological structures and also different macromolecule compositions usually characteristic of specific diseases. In this study, we evaluated and compared biochemical differences among samples of three different types of epiretinal proliferations: idiopathic epiretinal membrane (ERMi), membranes in proliferative vitreoretinopathy (PVRm), and proliferative diabetic retinopathy (PDRm). The membranes were analyzed by using synchrotron radiation-based Fourier transform infrared micro-spectroscopy (SR-FTIR). We used the SR-FTIR micro-spectroscopy setup, where measurements were set to achieve a high resolution that was capable of showing clear biochemical spectra in biological tissue. We were able to identify differences between PVRm, PDRm, and ERMi in protein and lipid structure; collagen content and collagen maturity; differences in proteoglycan presence; protein phosphorylation; and DNA expression. Collagen showed the strongest expression in PDRm, lower expression in ERMi, and very low expression in PVRm. We also demonstrated the presence of silicone oil (SO) or polydimethylsiloxane in the structure of PVRm after SO endotamponade. This finding suggests that SO, in addition to its many benefits as an important tool in vitreoretinal surgery, could be involved in PVRm formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.