Abstract

The deformation-induced microstructural variation in the metastable β-type biomedical Ti–35Nb–5Ta–7Zr (wt.%) alloy subjected to multi-pass cold-rolling to 90% reduction has been investigated by a combination of X-ray diffraction, optical microscopy, conventional transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) techniques. Multi-pass cold rolling for the Ti–35Nb–5Ta–7Zr alloy includes various localized deformation processes which can result in dislocation tangle, stress-induced ω-phase transformation and deformation-band formation. Deformation-induced amorphization caused by high-density defect accumulation in deformation bands has been identified. By means of TEM and HRTEM observations, distributional, morphological and structural features for deformation bands have been clearly revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.