Abstract
Defects present in ZnO nanocrystals prepared by a wet chemical method have been characterized by photoluminescence (PL) and positron annihilation spectroscopy (PAS) techniques. The as-prepared sample was heat treated at different temperatures to obtain nanocrystals in the size range of 19–39nm. X ray diffractograms confirmed the single-phase wurtzite structure formation. Photoluminescence measurements showed a strong violet band at 434nm, which has been identified as due to electronic transitions from the zinc interstitial defect level to the top of the valence band. A marked decrease in the intensity of the violet emission with increasing heat-treatment temperature has been observed, which is attributed to recombination of zinc interstitials with zinc vacancies. Positron annihilation spectroscopy has been employed to understand the dynamics of the vacancy-type defects and their annealing behavior. The observed variation of the defect related lifetime components with heat-treatment temperature has been successfully explained by using a three-state trapping model. The results of PL and PAS studies in the present case are found to be complementary to each other.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have