Abstract
A major issue in the catalytic fast pyrolysis (CFP) of biomass is the rapid deactivation of the typically employed zeolite-based catalysts. Detailed understanding of the deactivation pathways and the type and location of coke deposits are essential for the further development of improved or new catalyst materials, including appropriate regeneration protocols. Such deactivation and regeneration studies focus almost invariably on small-scale CFP reactor units employing catalyst materials in powder form. In this study, we report the in-depth characterization of deactivated and regenerated ZrO2-promoted zeolite ZSM-5 catalyst extrudates after ex-situ CFP tests carried out in a bench scale reactor. The findings support that coking is the main reason for catalyst deactivation, i.e. for the observed decreased activity in cracking and deoxygenation. Post-mortem characterization by confocal fluorescence microscopy reveals an egg-shell spatial distribution of the coke deposits within the catalyst extrudates. These deposits are heavily poly-aromatic in nature. The majority of the coke build-up occurs in the first 20 min of the reaction and is formed on the strong Brønsted acid sites, which promote deep deoxygenation and cracking. With increasing time-on-stream, the coke deposition slows down, occurring now mainly on the external surface of the zeolite to generate a softer, i.e. more hydrogen-rich, coke on the ZrO2 domains. The catalyst is readily regenerated via thermal oxidation in air, with optimal regeneration at 500 °C. This temperature removes all coke deposits, with no detrimental effect on the catalyst’s structural, textural and acid (type and strength) properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.