Abstract
Zebrafish (Danio rerio) are ideal model organisms for investigating nervous system function, both in health and disease. Nevertheless, functional characteristics of dopamine (DA) release and uptake regulation are still not well-understood in zebrafish. In this study, we assessed D3 autoreceptor function in the telencephalon of whole zebrafish brains ex vivo by measuring the electrically stimulated DA release ([DA]max) and uptake at carbon fiber microelectrodes with fast-scan cyclic voltammetry. Treatment with pramipexole and 7-OH-DPAT, selective D3 autoreceptor agonists, sharply decreased [DA]max. Conversely, SB277011A, a selective D3 antagonist, nearly doubled [DA]max and decreased k, the first-order rate constant for the DA uptake, to about 20% of its original value. Treatment with desipramine, a selective norepinephrine transporter blocker, failed to increase current, suggesting that our electrochemical signal arises solely from the release of DA. Furthermore, blockage of DA uptake with nomifensine-reversed 7-OH-DPAT induced decreases in [DA]max. Collectively, our data show that, as in mammals, D3 autoreceptors regulate DA release, likely by inhibiting uptake. The results of this study are useful in the further development of zebrafish as a model organism for DA-related neurological disorders such as Parkinson's disease, schizophrenia, and drug addiction.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have