Abstract

With the advantage of simplicity and low cost, ink jet printing has the potential to replace the traditional chemical and physical deposition technology in thin film fabrication. In this work, silver conductive thin films are deposited on glass and polyimide substrates by ink jet printing, where some major characteristics of the printed thin films are investigated and compared to those deposited by sputtering. The micro texture and residual stresses of the thin films are measured with X-ray diffractometry (XRD). Using thin film scratch tester, the adhesion of thin films deposited by both ink jet printing and sputtering is studied. Further observations on electric and optical performance by using visible wavelength photospectrometry, four-point probe, and surface profiler are also discussed. The result shows that the micro texture of the printed thin film behaves as good as the sputtered thin film. Furthermore, the micro scratch result illustrates that the adhesion of the printed thin film is even better than the sputtered thin film. It emphasizes that, after certain baking process, the ink jet printing has the possibility to replace sputtering in thin film deposition, especially for the polymer substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.