Abstract

In this work, a direct pyrolysis mass spectrometry technique was applied to characterize a conducting copolymer of succinic acid bis‐(4‐pyrrol‐1‐yl‐phenyl) ester (SM) and thiophene prepared by electrochemical polymerization. Thermal degradation behavior of both components was quite similar to those of the corresponding homopolymers, PSM, and polythiophene PTh. Yet, detection of oligomers and mixed dimers of both monomers in the high temperature pyrolysis mass spectra confirmed the formation of a copolymer. Furthermore, evolution of SM monomer in the temperature range where the fragments, due to the thermal degradation of PTh chains, have been detected. Also, the generation of dimer of thiophene in the temperature range, where the fragments associated with PSM have been observed, pointed out the presence of thiophene and SM units along the PTh and PSM chains. However, as thermal stabilities of PTh and PSM chains were nearly identical to the corresponding homopolymers, it may be concluded that the presence of other monomer or low molecular weight oligomers along the chains of each component did not significantly affect the thermal characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.