Abstract

The mechanical stability of Chip Scale Packages (CSP) used in surface mount technology is of primary concern. The dominant issues are package warpage and solder fatigue in solder joints under cyclic loads. To address these issues, molding compound and die attach film were characterized with finite element method which employed a viscoelastic and viscoplastic constitutive model. The model was verified with experiments on package warpage, PCB warpage and solder joint reliability. After the correlation was observed, the effect of molding compound and die attach film on package warpage and solder joint reliability was investigated. It was found that package warpage tremendously affected solder joint reliability. Furthermore, a die attach film was developed based on results of the modeling. CSP with the developed die attach film are robust and capable of withstanding the thermal stresses, humidity and high temperatures encountered in typical package assembly and die attach processes. Also, a lead free solder is discussed based on the results of creep testing. This paper presents the viscoelastic and viscoplastic constitutive model and its verification, the optimum material properties, the experimental and simulated reliability and performance results of the u∗BGA packages, and the lead free solder creep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.