Abstract

Electron transport and recombination in three-dimensionally-ordered (3D-ordered) structure electrodes were investigated using intensity-modulated photocurrent and photovoltage spectroscopy. The surface-modified TiO2 inverse opal structure was applied as a 3D electrode. The morphology, crystalline structure and surface states of the 3D-ordered structure were characterized by SEM, TEM and XPS and compared to those of the conventional nanoparticulate TiO2 structure. The performance of the 3D electrode was also evaluated by comparing the transport time and recombination lifetime to those of the conventional electrodes. Remarkably, the recombination lifetime in inverse opal was found to be greater than in nanocrystalline TiO2 by 4.3-6.2 times, thus improving the electron collection efficiency by 10%. Comparing the photovoltaic performance, although the dye adsorption of the 3D-ordered porous electrode is lower, the electrode achieves a photocurrent density comparable to that of a nanoparticulate TiO2 electrode due to the higher light scattering as well as the higher collection efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.