Abstract
The lysosomal cysteine protease cathepsin C plays a pivotal role in regulation of inflammatory and immune responses. However, the function of fish cathepsin C in virus replication remains largely unknown. In this study, cathepsin C gene (Ec-CC) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CC cDNA was composed of 2077 bp. It contained an open reading frame (ORF) of 1374 bp and encoded a 458-amino acid protein which shared 89% identity to cathepsin C from bicolor damselfish (Stegastes partitus). Amino acid alignment analysis showed that Ec-CC contained an N-terminal signal peptide, the propeptide region and the mature peptide. RT-PCR analysis showed that Ec-CC transcript was expressed in all the examined tissues which abundant in spleen and head kidney. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the relative expression of EC-CC was significantly increased at 24 h post-infection. Subcellular localization analysis revealed that Ec-CC was distributed mainly in the cytoplasm. Further studies showed that overexpression of Ec-CC in vitro significantly delayed the cytopathic effect (CPE) progression evoked by SGIV and inhibited the viral genes transcription. Moreover, overexpression of Ec-CC significantly increased the expression of proinflammatory cytokines during SGIV infection. Taken together, our results demonstrated that Ec-CC might play a functional role in SGIV infection by regulating the inflammation response.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have