Abstract

Abstract Microbial contamination is one of the main risks affecting water safety. Traditional microbial detection methods tend to be time-consuming and labor-intensive. Thus, this study investigated a potential rapid and simple method for bacterial detection in water by excitation–emission matrix (EEM) fluorescence spectroscopy. Particularly, bacterial intrinsic fluorophores were divided into three regions, namely Region A (amino acids), Region N (NAD(P)H) and Region F (flavins). Afterwards, fluorescence characteristics of four pure bacterial species (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) as well as indigenous bacteria in secondary effluent from two water reclamation plants were evaluated via fluorescence regional integration (FRI). Correlation analysis between fluorescence intensity (FI) integral and bacterial concentration was conducted, and principal component analysis (PCA) was applied to distinguish the fluorescence spectra of different bacteria. The results showed that most of the bacterial autofluorescence was emitted by amino acids and the FI integral of flavins had a good linear relationship (R2 > 0.9) with bacterial concentration. PCA could distinguish varied bacterial species and bacteria from different secondary effluents. This study indicated that FRI was helpful for the characterization of bacterial fluorescence and the quantification of bacteria in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.