Abstract

Although monoclonal antibodies to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are known, B-cell receptor repertoire and its change in patients during coronavirus disease-2019 (COVID-19) progression is underreported. We aimed to study this molecularly. We used immunoglobulin heavy chain (IGH) variable region (IGHV) spectratyping and next-generation sequencing of peripheral blood B-cell genomic DNA collected at multiple time points during disease evolution to study B-cell response to SARS-CoV-2 infection in 14 individuals with acute COVID-19. We found a broad distribution of responding B-cell clones. The IGH gene usage was not significantly skewed but frequencies of individual IGH genes changed repeatedly. We found predominant usage of unmutated and low mutation-loaded IGHV rearrangements characterizing naïve and extrafollicular B cells among the majority of expanded peripheral B-cell clonal lineages at most tested time points in most patients. IGH rearrangement usage showed no apparent relation to anti-SARS-CoV-2 antibody titers. Some patients demonstrated mono/oligoclonal populations carrying highly mutated IGHV rearrangements indicating antigen experience at some of the time points tested, including even before anti-SARS-CoV-2 antibodies were detected. We present evidence demonstrating that the B-cell response to SARS-CoV-2 is individual and includes different lineages of B cells at various time points during COVID-19 progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.