Abstract

One of the challenges in the study of autoimmunity is to understand which autoreactive cells are subject to regulation and what mechanisms of regulation are operative. In mice transgenic for the R4A-gamma2b heavy chain of an anti-double stranded (ds) DNA antibody, the gamma2b heavy chain can pair with the full spectrum of endogenous light chains to produce a multitude of antibodies, including anti-dsDNA antibodies of different affinities and fine specificities. We have previously demonstrated the existence of two populations of anti-DNA B cells in non-autoimmune hosts: a high-affinity population which is rendered anergic in vivo, and a second high-affinity population which is deleted. We have now identified a third population of dsDNA-binding B cells. These cells produce germ-line-encoded antibodies with an apparent affinity for dsDNA that is 1 to 4 logs lower than the apparent affinities of antibodies made by anergic or deleted B cells, and represent a non-tolerized population which escapes regulation. Based on its characterization, we can define a molecular threshold for tolerance induction, and can speculate on the fate of these B cells when they are recruited to an immune response and undergo somatic mutation to become high-affinity anti-DNA B cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call