Abstract

An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.