Abstract

The major photoproduct in UV-irradiated Bacillus spore DNA is a unique thymine dimer called spore photoproduct (SP, 5-thyminyl-5,6-dihydrothymine). The enzyme spore photoproduct lyase (SP lyase) has been found to catalyze the repair of SP dimers to thymine monomers in a reaction that requires S-adenosylmethionine. We present here the first detailed characterization of catalytically active SP lyase, which has been anaerobically purified from overexpressing Escherichia coli. Anaerobically purified SP lyase is monomeric and is red-brown in color. The purified enzyme contains approximately 3.1 iron and 3.0 acid-labile S(2-) per protein and has a UV-visible spectrum characteristic of iron-sulfur proteins (410 nm (11.9 mM(-1) cm(-1)) and 450 nm (10.5 mM(-1) cm(-1))). The X-band EPR spectrum of the purified enzyme shows a nearly isotropic signal (g = 2.02) characteristic of a [3Fe-4S]1+ cluster; reduction of SP lyase with dithionite results in the appearance of a new EPR signal (g = 2.03, 1.93, and 1.89) with temperature dependence and g values consistent with its assignment to a [4Fe-4S]1+ cluster. The reduced purified enzyme is active in SP repair, with a specific activity of 0.33 micromol/min/mg. Only a catalytic amount of S-adenosylmethionine is required for DNA repair, and no irreversible cleavage of S-adenosylmethionine into methionine and 5'-deoxyadenosine is observed during the reaction. Label transfer from [5'-3H]S-adenosylmethionine to repaired thymine is observed, providing evidence to support a mechanism in which a 5'-deoxyadenosyl radical intermediate directly abstracts a hydrogen from SP C-6 to generate a substrate radical, and subsequent to radical-mediated beta-scission, a product thymine radical abstracts a hydrogen from 5'-deoxyadenosine to regenerate the 5'-deoxyadenosyl radical. Together, our results support a mechanism in which S-adenosylmethionine acts as a catalytic cofactor, not a substrate, in the DNA repair reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.