Abstract

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.