Abstract

Alkyl polyglycosides today represent the most important sugar surfactant. Nonionic sugar surfactants produced via different synthetic routes are mixtures of alkyl homologues, oligomers, anomers and isomers. Alkyl homologues and oligomers of alkyl mono- and diglucosides were separated by reversed-phase high-performance liquid chromatography (HPLC) with methanol–water as the mobile phase using a gradient elution. The gradient was optimized in respect to a simultaneous separation of alkyl glycosides according to their alkyl chain length and alkyl polyoxyethylene glucosides with regard to their length of the polyoxyethylene spacer. The separation of alkyl glycosides into α- and β-anomers was carried out by normal-phase HPLC with isooctane–ethyl acetate (60:40, v/v)–2-propanol in the gradient mode. Light scattering detection was used. Matrix-assisted laser desorption ionization time-of-flight mass spectra of alkyl glucosides and dodecyl glucosides with oxyethylene spacer groups are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call