Abstract

Francisella tularensis type A is the primary cause of tularemia in animals and humans in North America. The majority of research on F. tularensis has been done with the attenuated live vaccine strain (LVS), which is a type B, but very few wild-type F. tularensis strains have been characterized. A gram-negative coccobacillus that was isolated in pure culture from the lungs of a cat that died after being lost for 5 days was received for identification at the Virginia-Maryland Regional College of Veterinary Medicine Teaching hospital. The isolate (strain TI0902) was not identified (or was misidentified) by commercial identification systems; however, it was identified as F. tularensis subspecies tularensis (type A) by sequencing a portion of the 16S ribosomal RNA gene. Furthermore, repetitive extragenic palindromic sequences-polymerase chain reaction amplified a 4-kb DNA fragment from TI0902 that was characteristic of F. tularensis type A but not type B. The electrophoretic profile of the lipopolysaccharide of strain TI0902 was identical to that of the LVS by Western blotting with antiserum to LVS. The protein-enriched outer membrane of strain TI0902 contained 6-8 proteins, which were similar in molecular size to those from the LVS. Electron microscopy of negatively stained and alcian blue-stained LVS and TI0902 cells showed that both strains were coccobacillary in shape and may be encapsulated. However, after mouse challenge, the TI0902 strain was clearly more virulent than the LVS strain. Results of this study indicate that the genotype and phenotype of wild-type F. tularensis type A strain TI0902 is similar, but not identical, to that of the LVS strain. Further studies will help determine whether pathogenesis and host-pathogen interactions are also similar between the 2 strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.