Abstract

We propose a class of invertible linear periodically time varying (LPTV) filters. After introducing modulator and MIMO representations of LPTV filters, we associate a matrix formulation for these two representations. The inversion problem is then studied leading to a matrix inversion problem. Under a condition on the LPTV construction, the LPTV modulator matrix becomes circulant. Using the diagonalization properties of circulant matrices, the problem of inverting the N periodic LPTV filter reduces to the inversion of N linear time invariant (LTI) filters. An analytic expression of the LPTV inverse filter is given. Such invertible LPTV filters define a general set of LPTV filters in which, for example, convolutional interleavers are included. To illustrate the good LPTV properties of this class of LPTV filters, simulation results emphasize the spreading efficiency of this class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.