Abstract

An enzyme, l-ribose isomerase (l-RI), mostly catalyzes the isomerization of l-ribose and l-ribulose. These so-called rare sugars are essential for the treatment of cancer and other viral diseases. In the present study, l-ribose isomerase produced from a bacterium, Mycetocola miduiensis (Mm-LRIse), by using l-ribose as a carbon source. The recombinant l-ribose isomerase gene was cloned and overexpressed from M. miduiensis and purified with an exclusive band of 32 kDa by nickel-affinity chromatography. This gene possessed 267 amino acids protein having an estimated molecular weight of 29,568.17 Da. The native molecular weight of Mm-LRIse estimated by HPLC was 134.84 kDa. The recombinant l-ribose isomerase was highly active in sodium phosphate (50 mM) buffer at 40 °C and pH 7.5, showing the specific activity up to 47.40 U mg−1. Mm-LRIse showed no significant enhancement in activity with metallic ions except Mn2+ and Co2+. The values of Km, Kcat, Kcat/Km and Vmax of Mm-LRIse against l-ribose substrate were 42.48 mM, 9259.26 min−1, 217.43 min−1 mM−1, and 277.78 U mg−1 respectively. At equilibrium, the l-ribulose transformation rate was nearly 32 % (6.34 g L−1) using 20 g L−1 of l-ribose. The results revealed that the Mm-LRIse enzyme has a potential for L-ribulose production from l-ribose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.