Abstract

The essential role of the inwardly rectifying potassium channel Kir5.1 (KCNJ16) in controlling electrolyte homeostasis and blood pressure has been demonstrated in human and animal studies. Previous studies have identified several bi-allelic mutations of KCNJ16 in humans, causing severe hypokalemia, renal salt wasting, and disturbed acid-base homeostasis. Here, we identified a novel homozygous variant of KCNJ16, I26T, in an Amish patient affected with polydipsia, developmental delay, and chronic metabolic acidosis with low serum bicarbonate concentration. Subsequently, we generated the rat model with I26T mutation using Dahl salt-sensitive rat (I26T rat) to characterize this variant. The male mutant rats displayed similar blood pressure and electrolyte homeostasis under baseline and with a high salt (4% NaCl) challenge. Blood pH, HCO3 - and renal damage also remained similar between WT and I26T rats after high salt challenge. Additionally, single-channel patch clamp analysis revealed similar channel activity in CHO cells overexpressed with WT and I26T mutant Kir4.1/5.1 channels. In summary, this study reported a novel variant in KCNJ16, namely I26T, which is likely a benign variant and not associated with pathologic phenotype in either human or Dahl salt-sensitive rats, indicating that the type/location of variant should be considered when diagnosing and treating patients with KCNJ16 mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.